JEE MAIN + ADVANCED
 MATHEMATICS

TOPIC NAME
 BINOMIAL
 THEOREM

(PRACTICE SHEET)

LEVEL- 1

Question Binomial Theorem for positive based on integral Index

Q. 1 Fourth term in the expansion of $\left(\frac{a}{3}+9 b\right)^{10}$ is-
(A) $40 a^{7} b^{3}$
(B) $40 a^{3} b^{7}$
(C) $1890 a^{6} b^{4}$
(D) $1890 a^{4} b^{6}$
Q. 2 Second term in the expansion of $(2 x+3 y)^{5}$ will be -
(A) $46 x^{2} y^{3}$
(B) $30 x^{3} y^{2}$
(C) $240 x^{4} y$
(D) $810 \mathrm{xy}^{4}$
Q. 3 The $5^{\text {th }}$ term of the expansion of $(x-2)^{8}$ is -
(A) ${ }^{8} C_{5} \mathrm{X}^{3}(-2)^{5}$
(B) ${ }^{8} C_{5} x^{3} 2^{5}$
(C) ${ }^{8} \mathrm{C}_{4} \mathrm{x}^{4}(-2)^{4}$
(D) ${ }^{8} \mathrm{C}_{6} \mathrm{x}^{2}(-2)^{6}$
Q. 4 The number of terms in expansion of $\left(x-3 x^{2}+3 x^{3}\right)^{20}$ is-
(A) 60
(B) 61
(C) 40
(D) 41
Q. 5 The term with coefficient ${ }^{6} \mathrm{C}_{2}$ in the expansion of $(1+x)^{6}$ is-
(A) T_{1} and T_{3}
(B) T_{2} and T_{4}
(C) T_{3} and T_{5}
(D) None of these
Q. 6 If n is a positive integer, then $\mathrm{r}^{\text {th }}$ term in the expansion of $(1-\mathrm{x})^{\mathrm{n}}$ is-
(A) ${ }^{n} C_{r}(-x)^{r}$
(B) ${ }^{n} C_{r} X^{r}$
(C) ${ }^{n} C_{r-1}(-x)^{r-1}$
(D) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1} \mathrm{X}^{\mathrm{r}-1}$
Q. 7 If the $4^{\text {th }}$ term in the expansion of $\left(a x+\frac{1}{x}\right)^{\mathrm{n}}$ is $\frac{5}{2}$, then the values of a and n are-
(A) $1 / 2,6$
(B) 1, 3
(C) $1 / 2,3$
(D) can not be found

The coefficient of $(3 r)^{\text {th }}$ term and coefficient of $(\mathrm{r}+2)^{\text {th }}$ term in the expansion of $(1+\mathrm{x})^{2 \mathrm{n}}$ are equal then (where $\mathrm{r}>1, \mathrm{n}>2$), positive integer)-
(A) $r=n / 2$
(B) $r=n / 3$
(C) $r=\frac{n+1}{2}$
(D) $\mathrm{r}=\frac{\mathrm{n}-1}{2}$
Q. 9 The coefficient of $a^{2} b^{3}$ in $(a+b)^{5}$ is-
(A) 10
(B) 20
(C) 30
(D) 40
Q. 10 The coefficient of x^{7} and x^{8} in the expansion of $\left(2+\frac{x}{3}\right)^{n}$ are equal, then n is equal to-
(A) 35
(B) 45
(C) 55
(D) None of these
Q. 11 The coefficient of x^{5} in the expansion of $(2+3 x)^{12}$ is-
(A) ${ }^{12} \mathrm{C}_{5} 2^{5}, 3^{7}$
(B) ${ }^{12} \mathrm{C}_{6} 2^{6} .3^{6}$
(C) ${ }^{12} \mathrm{C}_{5} 2^{7} \cdot 3^{5}$
(D) None of these
Q. 12 If the expansion of $\left(x^{2}-\frac{1}{4}\right)^{n}$, the coefficient of third term is 31 , then the value of n is-
(A) 30
(B) 31
(C) 29
(D) 32
Q. 13 If A and B are coefficients of x^{r} and x^{n-r} respectively in the expansion of $(1+x)^{n}$, then-
(A) $\mathrm{A}=\mathrm{B}$
(B) $A \neq B$
(C) $A=\lambda, B$ for some λ
(D) None of these
Q. 14 If $(1+\text { by })^{\mathrm{n}}=\left(1+8 y+24 \mathrm{y}^{2}+\ldots ..\right)$ then the value of b and n are respectively-
(A) 4,2
(B) $2,-4$
(C) 2, 4
(D) $-2,4$
Q. 15 The number of terms in the expansion of $(1+5 \sqrt{2} x)^{9}+(1-5 \sqrt{2} x)^{9}$ is-
(A) 5
(B) 7
(C) 9
(D) 10
Q. 16 The number of non zero terms in the expansion of $\left[(1+3 \sqrt{2} x)^{9}-(1-3 \sqrt{2} x)^{9}\right]$ is -
(A) 9
(B) 10
(C) 5
(D) 15
Q. 17 After simplification, the total number of terms in the expansion of $(x+\sqrt{2})^{4}+(x-\sqrt{2})^{4}$ is-
(A) 10
(B) 5
(C) 4
(D) 3
Q. 18 The number of terms in the expansion of $\left[(x-3 y)^{2}(x+3 y)^{2}\right]^{3}$ is-
(A) 6
(B) 7
(C) 8
(D) None of these
Q. 19 The number of terms in $(x+a)^{100}+(x-a)^{100}$ after solving the expansion is -
(A) 202
(B) 51
(C) 101
(D) None of these
Q. 20 The coefficient of x^{5} in the expansion of $\left(1+x^{2}\right)^{5}(1+x)^{4}$ is -
(A) 30
(B) 60
(C) 40
(D) None of these
Q. 21 The coefficient of x^{5} in the expansion of $(1+x)^{3} .(1-x)^{6}$ is -
(A) 6
(B) 22
(C) -6
(D) 8
Q. 22 The coefficient of x^{4} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$ is-
(A) 990
(B) 495
(C) 330
(D) None of these

Question

 based on
Particular term in the expansion

Q. 23 The coefficient of x^{4} in the expansion of $\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}$ is -
(A) $\frac{405}{256}$
(B) $\frac{504}{259}$
(C) $\frac{450}{263}$
(D) None of these
Q. 24 The coefficient of x^{-26} in the expansion of $\left(x^{2}-\frac{2}{x^{4}}\right)^{11}$ is
(A) 330×2^{6}
(B) -330×2^{6}
(C) 330×2^{7}
(D) -330×2^{7}
Q. 25 The term independent of x in the expansion of $\left(\sqrt{\frac{\mathrm{x}}{3}}+\frac{3}{2 \mathrm{x}^{2}}\right)^{10}$ will be -
(A) $3 / 2$
(B) $5 / 4$
(C) $5 / 2$
(D) None of these
Q. 26 The term independent of y in the binomial expansion of $\left(\frac{1}{2} y^{1 / 3}+y^{-1 / 5}\right)^{8}$ is -
(A) sixth
(B) seventh
(C) fifth
(D) None of these
Q. 27 If x^{4} occurs in the $r^{\text {th }}$ term in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$, then r equals-
(A) 7
(B) 8
(C) 9
(D) 10
Q. 28 The term containing x in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{5}$ is -
(A) $2^{\text {nd }}$
(B) $3^{\text {rd }}$
(C) $4^{\text {th }}$
(D) $5^{\text {th }}$
Q. 29 The term independent of x in $\left(2 x+\frac{1}{3 x}\right)^{6}$ is -
(A) $160 / 9$
(B) $80 / 9$
(C) $160 / 27$
(D) $80 / 3$
Q. 30 The term independent of x in the expansion of $\left(\sqrt{\frac{\mathrm{x}}{3}}+\sqrt{\frac{3}{2 \mathrm{x}^{2}}}\right)^{10}$ is-
(A) ${ }^{10} \mathrm{C}_{1}$
(B) $5 / 12$
(C) 1
(D) None of these
Q. 31 If $9^{\text {th }}$ term in the expansion of $\left(x^{1 / 3}+x^{-1 / 3}\right)^{n}$ does not depend on x, then n is equal to-
(A) 10
(B) 13
(C) 16
(D) 18
Q. 32 The constant term in the expansion of $\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{2 \mathrm{n}}$ is-
(A) $\frac{2 n!}{n!}$
(B) $\frac{n!}{2 n!}$
(C) $\frac{2 n!}{2!n!}$
(D) $\frac{2 n!}{n!n!}$
Q. 33 The coefficient of the term independent of y in the expansion of $\left(y-\frac{1}{y^{2}}\right)^{3 n}$ is -
(A) ${ }^{3 n} \mathrm{C}_{\mathrm{n}-1}(-1)^{\mathrm{n}-1}$
(B) ${ }^{3 n} \mathrm{C}_{\mathrm{n}}$
(C) ${ }^{3 n} \mathrm{C}_{\mathrm{n}}(-1)^{\mathrm{n}}$
(D) None of these
Q. 34 The number of integral terms in the expansion of $\left(5^{1 / 2}+7^{1 / 6}\right)^{642}$ is -
(A) 106
(B) 108
(C) 103
(D) 109

Question

based on

Middle Term

Q. 35 Middle term in the expansion of $\left(x^{2}-2 x\right)^{10}$ will be -
(A) ${ }^{10} \mathrm{C}_{4} \mathrm{x}^{17} 2^{4}$
(B) $-{ }^{10} \mathrm{C}_{5} 2^{5} \mathrm{x}^{15}$
(C) $-{ }^{10} \mathrm{C}_{4} 2^{4} \mathrm{x}^{17}$
(D) ${ }^{10} \mathrm{C}_{5} 2^{4} \mathrm{x}^{15}$
Q. 36 The middle term in the expansion of $\left(\frac{3}{x^{2}}-\frac{x^{3}}{6}\right)^{9}$ is -
(A) $\frac{189}{8} \mathrm{x}^{2}, \frac{21}{16} \mathrm{x}^{7}$
(B) $\frac{189}{8} \mathrm{x}^{2},-\frac{21}{16} \mathrm{x}^{7}$
(C) $-\frac{189}{8} x^{2},-\frac{21}{16} x^{7}$
(D) None of these
Q. 37 The middle term of the expansion $\left(\frac{x}{a}-\frac{a}{x}\right)^{8}$ is-
(A) $56 a^{2} / x^{2}$
(B) $-56 a^{2} / x^{2}$
(C) 70
(D) -70
Q. 38 The middle term in the expansion of $\left(\mathrm{x}^{3}-\frac{1}{\mathrm{x}^{3}}\right)^{10}$ is-
(A) 252
(B) -252
(C) 210
(D) -210
Q. 39 If the middle term in the expansion of $\left(\mathrm{x}^{2}+\frac{1}{\mathrm{x}}\right)^{\mathrm{n}}$ is $924 \mathrm{x}^{6}$, then $\mathrm{n}=$
(A) 10
(B) 12
(C) 14
(D) None of these
Q. 40 The greatest coefficient in the expansion of $(1+x)^{10}$ is-
(A) $\frac{10!}{5!6!}$
(B) $\frac{10!}{(5!)^{2}}$
(C) $\frac{10!}{5!7!}$
(D) None of these
Q. 41 The middle term in the expansion of $\left(1-3 x+3 x^{2}-x^{3}\right)^{6}$ is -
(A) ${ }^{18} \mathrm{C}_{10} \mathrm{x}^{10}$
(B) ${ }^{18} \mathrm{C}_{9}(-\mathrm{x})^{9}$
(C) ${ }^{18} \mathrm{C}_{9} \mathrm{x}^{9}$
(D) $-{ }^{18} \mathrm{C}_{10} \mathrm{x}^{10}$

Question based on

Term from end

Q. 42 The $5^{\text {th }}$ term from the end in the expansion of $\left(\frac{x^{3}}{2}-\frac{2}{x^{3}}\right)^{9}$ is -
(A) $63 x^{3}$
(B) $-\frac{252}{x^{3}}$
(C) $\frac{672}{x^{18}}$
(D) None of these
Q. 43 If in the expansion of $\left(2^{1 / 3}+\frac{1}{3^{1 / 3}}\right)^{\mathrm{n}}$, the ratio of $6^{\text {th }}$ terms from beginning and from the end is $1 / 6$, then the value of n is -
(A) 5
(B) 7
(C) 9
(D) None of these

Question based on

Binomial Coefficient

Q. 44 If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\ldots .+C_{n} x^{n}$, then the value of $\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots+\mathrm{C}_{\mathrm{n}}$ is-
(A) 2^{n+1}
(B) $2^{\mathrm{n}-1}$
(C) $2^{\mathrm{n}}+1$
(D) $2^{\mathrm{n}}-1$
Q. 45 If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, then the value of $\mathrm{C}_{0}+2 \mathrm{C}_{1}+3 \mathrm{C}_{2}+\ldots .+(\mathrm{n}+1) \mathrm{C}_{\mathrm{n}}$ is -
(A) $2^{n}(n+1)$
(B) $2^{\mathrm{n}-1}(\mathrm{n}+1)$
(C) $2^{\mathrm{n}-1}(\mathrm{n}+2)$
(D) $2^{n}(n+2)$
Q. 46 If $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots . ., \mathrm{C}_{15}$ are coefficients of different terms in the expansion of $(1+x)^{15}$, then $\mathrm{C}_{0}+\mathrm{C}_{2}+\mathrm{C}_{4}+\ldots+\mathrm{C}_{14}$ is equal to-
(A) 2^{15}
(B) 2^{14}
(C) 2^{7}
(D) 2^{8}
Q. 47 If $(1+x)^{n}=1+C_{1} x+C_{2} x^{2}+\ldots .+C_{n} x^{n}$, then $\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{5}+\ldots .$. is equal to-
(A) 2^{n}
(B) $2^{\mathrm{n}}-1$
(C) $2^{\mathrm{n}}+1$
(D) $2^{\mathrm{n}-1}$
Q. $48 n!\left(\frac{1}{n!}+\frac{1}{2!(n-2)!}+\frac{1}{4!(n-4)!}+\ldots \ldots+\frac{1}{n!}\right)$ is equal to -
(A) 2^{n}
(B) $2^{\mathrm{n}-1}$
(C) $2^{\mathrm{n}+1}$
(D) 2^{-n+1}
Q. $49 \frac{1}{1!(n-1)!}+\frac{1}{3!(n-3)!}+\frac{1}{5!(n-5)!}+\ldots \ldots . .=$
(A) $\frac{2^{n}}{n!}$
(B) $\frac{2^{n-1}}{n!}$
(C) 0
(D) None of these
Q. 50 The value of ${ }^{8} \mathrm{C}_{0}+{ }^{8} \mathrm{C}_{2}+{ }^{8} \mathrm{C}_{4}+{ }^{8} \mathrm{C}_{6}+{ }^{8} \mathrm{C}_{8}$ is-
(A) 32
(B) 64
(C) 128
(D) 256
Q. 51 If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, then $\mathrm{C}_{0} \mathrm{C}_{1}+\mathrm{C}_{1} \mathrm{C}_{2}+\mathrm{C}_{2} \mathrm{C}_{3}+\ldots .+\mathrm{C}_{\mathrm{n}-1} \mathrm{C}_{\mathrm{n}}$ is equal to-
(A) $\frac{2 n!}{n!n!}$
(B) $\frac{2 n!}{n!(n+1)!}$
(C) $\frac{2 n!}{(n-1)!(n+1)!}$
(D) $\frac{2 \mathrm{n}!}{(\mathrm{n}-1)!\mathrm{n}!}$
Q. $52 \quad{ }^{\mathrm{n}} \mathrm{C}_{0}-\frac{1}{2}{ }^{\mathrm{n}} \mathrm{C}_{1}+\frac{1}{3}{ }^{\mathrm{n}} \mathrm{C}_{2}-\ldots \ldots .+(-1)^{\mathrm{n}} \frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}}{\mathrm{n}+1}=$
(A) n
(B) $1 / \mathrm{n}$
(C) $\frac{1}{n+1}$
(D) $\frac{1}{\mathrm{n}-1}$
Q. 53 In the expansion of $(1+x)^{n}\left(1+\frac{1}{x}\right)^{n}$, the term independent of x is-
(A) $\mathrm{C}_{0}^{2}+2 \mathrm{C}_{1}^{2}+\ldots . .+(\mathrm{n}+1) \mathrm{C}_{\mathrm{n}}^{2}$
(B) $\left(\mathrm{C}_{0}+\mathrm{C}_{1}+\ldots \ldots+\mathrm{C}_{\mathrm{n}}\right)^{2}$
(C) $\mathrm{C}_{0}^{2}+\mathrm{C}_{1}^{2}+\ldots . .+\mathrm{C}_{\mathrm{n}}^{2}$
(D) None of these
Q. 54 If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, then $\mathrm{C}_{0} \mathrm{C}_{\mathrm{r}}+\mathrm{C}_{1} \mathrm{C}_{\mathrm{r}+1}+\mathrm{C}_{2} \mathrm{C}_{\mathrm{r}+2}+\ldots \ldots+\mathrm{C}_{\mathrm{n}-\mathrm{r}} \mathrm{C}_{\mathrm{n}}$ is equal to-
(A) $\frac{2 n!}{(n-r)!(n+r)!}$
(B) $\frac{2 n!}{n!(n+r)!}$
(C) $\frac{2 n!}{n!(n-r)!}$
(D) $\frac{2 n!}{(n-1)!(n+1)!}$
Q. 55 If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots C_{n} . x^{n}$ then the value of $C_{0}+3 C_{1}+5 C_{2}+\ldots .+(2 n+1) C_{n}$ is-
(A) $n .2^{n}$
(B) $(\mathrm{n}-1) \cdot 2^{\mathrm{n}}$
(C) $(\mathrm{n}+2) \cdot 2^{\mathrm{n}-1}$
(D) $(\mathrm{n}+1) \cdot 2^{\mathrm{n}}$
Q. 56 If $C_{0}, C_{1}, C_{2} \ldots \ldots . C_{n}$ are binomial coefficients in the expansion of $(1+\mathrm{x})^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$, then $\frac{\mathrm{C}_{1}}{2}+\frac{\mathrm{C}_{3}}{4}+\frac{\mathrm{C}_{5}}{6}+\ldots .+\frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{n}+1}$ is equal to-
(A) $\frac{2^{n+1}-1}{n+1}$
(B) $(\mathrm{n}+1) \cdot 2^{\mathrm{n}+1}$
(C) $\frac{2^{n}-1}{n+1}$
(D) None of these
Q. 57 If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, then for n odd, $\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{3}{ }^{2}+\mathrm{C}_{5}{ }^{2}+\ldots . .+\mathrm{C}_{\mathrm{n}}{ }^{2}$ is equal to
(A) $2^{2 n-2}$
(B) 2^{n}
(C) $\frac{(2 n)!}{2(n!)^{2}}$
(D) $\frac{(2 n)!}{(n!)^{2}}$
Q. 58 If $\left(1+x+x^{2}\right)^{2 n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$. then the value of $a_{0}-a_{1}+a_{2}-a_{3}+\ldots$. is-
(A) 2^{n}
(B) 3^{n}
(C) 1
(D) 0
Q. 59 The sum of the coefficients in the expansion of $(a+2 b+c)^{10}$ is -
(A) 4^{10}
(B) 3^{10}
(C) $2^{10} \quad$ (D) 10^{4}
Q. 60 The sum of coefficients of even powers of x in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{5}$ is -
(A) 512
(B) -512
(C) 215
(D) None of these

LEVEL- 2

Q. 1 If $\left(1+x-2 x^{2}\right)^{6}=1+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\ldots .+$ $\mathrm{C}_{12} \mathrm{x}^{12}$, then the value of $\mathrm{C}_{2}+\mathrm{C}_{4}+\mathrm{C}_{6}+\ldots+\mathrm{C}_{12}$ is -
(A) 30
(B) 32
(C) 31
(D) None of these
Q. 2 If $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots . \mathrm{C}_{\mathrm{n}}$ are binomial coefficients of different terms in the expansion of $(1+x)^{n}$ then $\mathrm{C}_{0}-2 . \mathrm{C}_{1}+3 . \mathrm{C}_{2}-4 . \mathrm{C}_{3}+\ldots . .+(-1)^{\mathrm{n}} .(\mathrm{n}+1) \mathrm{C}_{\mathrm{n}}$ equals-
(A) $-\mathrm{n} \cdot 2^{\mathrm{n}-1}$
(B) 0
(C) $2^{n-1} \cdot(2-n)$
(D) None of these
Q. 3 If C_{r} stands for ${ }^{n} C_{r}$, then the sum of first ($n+1$) terms of the series
$\mathrm{aC}_{0}-(\mathrm{a}+\mathrm{d}) \mathrm{C}_{1}+(\mathrm{a}+2 \mathrm{~d}) \mathrm{C}_{2}-(\mathrm{a}+3 \mathrm{~d}) \mathrm{C}_{3}+\ldots$ is-
(A) $a / 2^{n}$
(B) na
(C) 0
(D) None of these
Q. 4 The value of $(\sqrt{5}+1)^{5}-(\sqrt{5}-1)^{5}$ is -
(A) 252
(B) 252
(C) 452
(D) 532
Q. 5 If $\left(2 x-3 x^{2}\right)^{6}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{12} x^{12}$, then values of a_{0} and a_{6} are -
(A) 0, 6
(B) $0,2^{6}$
(C) 1,6
(D) 0
Q. 6 If the $(r+1)^{\text {th }}$ term in the expansion of $\left(\sqrt[3]{\frac{a}{\sqrt{b}}}+\sqrt{\frac{b}{\sqrt[3]{a}}}\right)^{21}$ contains same powers of a and b, then the value of \mathbf{r} is -
(A) 9
(B) 10
(C) 8
(D) 6
Q. 7 If n is odd, then

$$
\mathrm{C}_{0}^{2}-\mathrm{C}_{1}^{2}+\mathrm{C}_{2}^{2}-\mathrm{C}_{3}^{2}+\ldots .+(-1)^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}^{2}=
$$

(A) 0
(B) 1
(C) ∞
(D) $\frac{n!}{(n / 2)^{2}!}$
Q. 8 In the expansion of $(1+x)^{n}, \frac{T_{r+1}}{T_{r}}$ is equal to
(A) $\frac{n+1}{r} x$
(B) $\frac{n+r+1}{r} x$
(C) $\frac{n-r+1}{r} x$
(D) $\frac{\mathrm{n}+\mathrm{r}}{\mathrm{r}+1} \mathrm{x}$
Q. 9 If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, then the value of $1^{2} C_{1}+2^{2} C_{2}+3^{2} C_{3}+\ldots+n^{2} C_{n}$ is
(A) $n(n+1) 2^{n-2}$
(B) $n(n+1) 2^{n-1}$
(C) $n(n+1) 2^{n}$
(D) None of these
Q. 10 The sum of coefficients of odd powers of x in the expansion of $(1+x)^{n}$ is -
(A) $2^{n}+1$
(B) $2^{n}-1$
(C) 2^{n}
(D) $2^{\mathrm{n}-1}$
Q. 11 The sum of $\mathrm{C}_{0}{ }^{2}-\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}-\ldots .+(-1)^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}{ }^{2}$ where n is an even integer, is-
(A) ${ }^{2 n} \mathrm{C}_{\mathrm{n}}$
(B) $(-1)^{n}{ }^{2 n} C_{n}$
(C) ${ }^{2 n} C_{n-1}$
(D) $(-1)^{\mathrm{n} / 2} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n} / 2}$
Q. 12 If $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots . . \mathrm{C}_{\mathrm{n}}$ denote the binomial coefficients in the expansion of $(1+x)^{n}$, then the value of $\sum_{r=0}^{n}(r+1) C_{r}$ is -
(A) $n 2^{n}$
(B) $(\mathrm{n}+1) 2^{\mathrm{n}-1}$
(C) $(\mathrm{n}+2) 2^{\mathrm{n}-1}$
(D) $(\mathrm{n}+2) 2^{\mathrm{n}-2}$
Q. 13 If $1 \leq \mathrm{r} \leq \mathrm{n}-1$ then ${ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}-2} \mathrm{C}_{\mathrm{r}}+\ldots . .+{ }^{\mathrm{r}} \mathrm{C}_{\mathrm{r}}$ equals-
(A) ${ }^{n} C_{r}$
(B) ${ }^{n} C_{r+1}$
(C) ${ }^{n+1} C_{r}$
(D) None of these
Q. 14 The coefficient of $1 / x$ in the expansion of $(1+\mathrm{x})^{\mathrm{n}}\left(1+\frac{1}{\mathrm{x}}\right)^{\mathrm{n}}$ is -
(A) $\frac{n!}{(n-1)!(n+1)!}$
(B) $\frac{(2 n)!}{(n-1)!(n+1)!}$
(C) $\frac{(2 n)!}{(2 n-1)!(2 n+1)!}$
(D) None of these
Q. 15 If $6^{\text {th }}$ term in the expansion of $\left(\frac{1}{x^{8 / 3}}+x^{2} \log _{10} x\right)^{8}$ is 5600 , then x is equal to-
(A) 8
(B) 10
(C) 9
(D) None of these
Q. 16 If the coefficient of third term in the expansion of $\left(x^{2 / 3}+\frac{1}{x^{1 / 3}}\right)^{n}$ is 27 more than the coefficient of second term, then the value of n is -
(A) 8
(B) 9
(C) 10
(D) None of these
Q. 17 The sum of the terms of the series $\left[3 .{ }^{n} C_{0}-8 \cdot{ }^{n} C_{1}+13 \cdot{ }^{n} C_{2}-18 .{ }^{n} C_{3}+\ldots . .+(n+1)\right]$ is-
(A) $3 \cdot 2^{n}-5 n \cdot 2^{n-1}$
(B) 0
(C) $3.2^{n}+5 n .2^{n-1}$
(D) None of these
Q. 18 If sum of all the coefficients in the expansion of $\left(x^{3 / 2}+x^{-1 / 3}\right)^{n}$ is 128 , then the coefficient of x^{5} is -
(A) 35
(B) 45
(C) 7
(D) None of these
Q. 19 If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} \cdot x^{n}$ then the value of $\mathrm{C}_{0} \mathrm{C}_{\mathrm{n}}+\mathrm{C}_{1} \mathrm{C}_{\mathrm{n}-1}+\mathrm{C}_{2} \mathrm{C}_{\mathrm{n}-2}+\ldots .+\mathrm{C}_{\mathrm{n}} \mathrm{C}_{0}$ is -
(A) 1
(B) $\frac{(2 n)!}{(n)!(n)!}$
(C) $\left(\frac{(2 n)!}{n!}\right)^{2}$
(D) $\left(2^{\mathrm{n}}\right)^{2}$
Q. 20 Find the value

$$
\frac{\left(18^{3}+7^{3}+3 \cdot 18.7 .25\right)}{3^{6}+6.2432+15.814+20.27 .8+15.9 .16+6.3 .32+64}
$$

(A) 1
(B) 5
(C) 25
(D) 100
Q. 21 If $a_{1}, a_{2}, a_{3}, a_{4}$ are the coefficients of any four consecutive terms in the expansion of $(1+x)^{n}$, then $\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}}$ is equal to-
(A) $\frac{a_{2}}{a_{2}+a_{3}}$
(B) $\frac{1}{2} \frac{a_{2}}{a_{2}+a_{3}}$
(C) $\frac{2 a_{2}}{a_{2}+a_{3}}$
(D) $\frac{2 a_{3}}{a_{2}+a_{3}}$
Q. 22 If the coefficients of four consecutive terms in the expansion of $(1+x)^{n}$ are a_{1}, a_{2}, a_{3} and a_{4}, then $\frac{a_{1}}{a_{1}+a_{2}}, \frac{a_{2}}{a_{2}+a_{3}}, \frac{a_{3}}{a_{3}+a_{4}}$ are in -
(A) A.P.
(B) G.P.
(C) H.P.
(D) None of these
Q. 23 If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots+C_{n} x^{n}$, then $\mathrm{C}_{0} \mathrm{C}_{2}+\mathrm{C}_{1} \mathrm{C}_{3}+\mathrm{C}_{2} \mathrm{C}_{4}+\ldots \ldots+\mathrm{C}_{\mathrm{n}-2} \mathrm{C}_{\mathrm{n}}=$
(A) $\frac{2 n!}{(n+1)!(n+2)!}$
(B) $\frac{2 n!}{n!(n+2)!}$
(C) $\frac{2 n!}{(n-2)!(n+2)!}$
(D) $\frac{2 n!}{(n-1)!(n+2)!}$
Q. 24 The greatest coefficient in the expansion of $(1+x)^{2 n+2}$ is -
(A) $\frac{2 n!}{(n!)^{2}}$
(B) $\frac{(2 n+2)!}{[(n+1)!]^{2}}$
(C) $\frac{(2 n+2)!}{n!(n+1)!}$
(D) $\frac{(2 n)!}{n!(n+1)!}$
Q. 25 The middle term in the expansion of $\left(x+\frac{1}{2 x}\right)^{2 n}$ is-
(A) $\frac{1.3 \cdot 5 \ldots .(2 n-3)}{n!}$
(B) $\frac{1.3 .5 \ldots . .(2 n-1)}{n!}$
(C) $\frac{1.3 .5 \ldots .(2 n+1)}{n!}$
(D) None of these
Q. 26 The term independent of x in the expansion of $\left(x-\frac{1}{x}\right)^{4}\left(x+\frac{1}{x}\right)^{3}$ is-
(A) -3
(B) 0
(C) 1
(D) 3
Q. 27 If the sum of the coefficients in the expansion of $\left(\alpha^{2} x^{2}-2 \alpha x+1\right)^{51}$ vanishes, then the value of α is -
(A) 2
(B) -1
(C) 1
(D) -2
Q. 28 If the sum of coefficients in the binomial expansion of $(x+y)^{n}$ is 4096 then greatest coefficient in the expansion is -
(A) 922
(B) 942
(C) 787
(D) 924
Q. 29 The value of $\left({ }^{n} C_{2}-2 .{ }^{n} C_{3}+3 \cdot{ }^{n} C_{4}-4 .{ }^{n} C_{5}+\ldots ..\right)$ is equal to -
(A) 1
(B) 0
(C) -1
(D) None of these
Q. 34 If $(1+x)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} \cdot(x)^{r}$ then $\left(1+\frac{{ }^{n} C_{1}}{{ }^{n} C_{0}}\right) \cdot\left(1+\frac{{ }^{n} C_{2}}{{ }^{n} C_{1}}\right) \ldots .\left(1+\frac{{ }^{n} C_{n}}{{ }^{n} C_{n-1}}\right)=$
(A) $\frac{\mathrm{n}^{\mathrm{n}-1}}{(\mathrm{n}-1)!}$
(B) $\frac{(\mathrm{n}+1)^{\mathrm{n}-1}}{(\mathrm{n}-1)!}$
(C) $\frac{(n+1)^{n}}{n!}$
(D) $\frac{(\mathrm{n}+1)^{\mathrm{n}+1}}{\mathrm{n}!}$
Q. 35 The term independent of x in the expansion of $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$ is -
(A) $\mathrm{T}_{4}=180$
(B) $\mathrm{T}_{5}=-210$
(C) $\mathrm{T}_{4}=-180$
(D) $\mathrm{T}_{5}=210$
Q. 30 The sum of 12 terms of the series
${ }^{12} \mathrm{C}_{1} \cdot \frac{1}{3}+{ }^{12} \mathrm{C}_{2} \cdot \frac{1}{9}+{ }^{12} \mathrm{C}_{3} \cdot \frac{1}{27}+\ldots$. is -
(A) $\left(\frac{4}{3}\right)^{12}-1$
(B) $\left(\frac{3}{4}\right)^{12}-1$
(C) $\left(\frac{3}{4}\right)^{12}+1$
(D) None of these
Q. 31 If $\mathrm{n}=10$ then $\left(\mathrm{C}_{0}^{2}-\mathrm{C}_{1}^{2}+\mathrm{C}_{2}^{2}-\mathrm{C}_{3}^{2}+\ldots \ldots+\right.$ $\left.(-1)^{\mathrm{n}}\left(\mathrm{C}_{\mathrm{n}}^{2}\right)\right)$ equals-
(A) $(-1)^{5} \cdot{ }^{10} \mathrm{C}_{5}$
(B) 0
(C) ${ }^{10} \mathrm{C}_{5}$
(D) $(-1)^{6}{ }^{10} \mathrm{C}_{6}$
Q. 32 If $n=11$ then $\left(C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-C_{3}^{2}+\ldots . .+(-1)^{\mathrm{n}}\left(\mathrm{C}_{\mathrm{n}}^{2}\right)\right.$ equals-
(A) $(-1)^{5} \cdot{ }^{10} \mathrm{C}_{5}$
(B) 0
(C) ${ }^{10} \mathrm{C}_{6}$
(D) None of these
Q. 33 The sum of $(\mathrm{n}+1)$ terms of the series
$\mathrm{C}_{0}{ }^{2}+3 \mathrm{C}_{1}^{2}+5 \mathrm{C}_{2}^{2}+\ldots .$. is -
(A) ${ }^{2 n-1} C_{n-1}$
(B) ${ }^{2 n-1} C_{n}$
(C) $2(\mathrm{n}+1)^{2 \mathrm{n}-1} \mathrm{C}_{\mathrm{n}}$
(D) None of these

LEVEL- 3

Q. 1 If the coefficients of T_{r}, T_{r+1}, T_{r+2} terms of $(1+x)^{14}$ are in A.P., then $r-$
(A) 6
(B) 7
(C) 8
(D) 9
Q. 2 The value of x, for which the $6^{\text {th }}$ term in the expansion of $\left(2^{\log _{2} \sqrt{\left(9^{x-1}+7\right)}}+\frac{1}{2^{(1 / 5) \log _{2}\left(3^{x-1}+1\right)}}\right)^{7}$ is 84 is equal to -
(A) 4,3
(B) 0,3
(C) 0,2
(D) 1,2
Q. 3 The coefficient of x^{5} in the expansion of $(1+x)^{21}+(1+x)^{22}+\ldots \ldots \ldots \ldots+(1+x)^{30}$ is -
(A) ${ }^{51} \mathrm{C}_{5}$
(B) ${ }^{9} \mathrm{C}_{5}$
(C) ${ }^{31} \mathrm{C}_{6}-{ }^{21} \mathrm{C}_{6}$
(D) ${ }^{30} \mathrm{C}_{5}+{ }^{20} \mathrm{C}_{5}$
Q. 4 The coefficient of x^{5} in the expansion of $\left(x^{2}-x-2\right)^{5}$ is-
(A) -83
(B) -82
(C) -81
(D) 0
Q. 5 In the expansion of $\left(1+3 x+2 x^{2}\right)^{6}$ the coefficient of x^{11} is -
(A) 144
(B) 288
(C) 216
(D) 576
Q. 6 Coefficients of $x^{r}[0<r<(n-1)]$ in the expansion of $(x+3)^{n-1}+(x+3)^{n-2}(x+2)+$ $(x+3)^{n-3}(x+2)^{2}+$ \qquad $+(x+2)^{n-1}-$
(A) ${ }^{n} C_{r}\left(3^{r}-2^{n}\right)$
(B) ${ }^{n} C_{r}\left(3^{n-r}-2^{n-r}\right)$
(C) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}\left(3^{\mathrm{r}}+2^{\mathrm{n}-\mathrm{r}}\right)$
(D) None of these
Q. 7 If $x+y=1$, then $\sum_{r=0}^{n} r^{2}{ }^{n} C_{r} x^{r} y^{n-r}$ equals -
(A) $n x y$
(B) $n x(x+y n)$
(C) $n x(n x+y)$
(D) None of these.
Q. $8 \quad(1+\mathrm{x})^{\mathrm{n}}-\mathrm{nx}-1$ is divisible by $($ where $\mathrm{n} \in \mathrm{N})-$
(A) $2 x^{3}$
(B) $2 x$
(C) x^{2}
(D) All of these
Q. 9

In integral terms is -
(A) 128
(B) 129
(C) 130
(D) 131
Q. 10 Let $\mathrm{R}=(5 \sqrt{5}+11)^{2 \mathrm{n}+1}$ and $f=\mathrm{R}-[\mathrm{R}]$, where [.] denotes the greatest integer function. The value of R. f is -
(A) $4^{2 n+1}$
(B) $4^{2 n}$
(C) $4^{2 \mathrm{n}-1}$
(D) $4^{-2 n}$
Q. 11 The greatest integer less than or equal to $(\sqrt{2}+1)^{6}$ is -
(A) 196
(B) 197
(C) 198
(D) 199
Q. 12 The number of integral terms in the expansion of $\left(5^{1 / 2}+7^{1 / 6}\right)^{642}$ is -
(A) 106
(B) 108
(C) 103
(D) 109
Q. 13 The remainder when 5^{99} is divides by 13 is -
(A) 6
(B) 8
(C) 9
(D) 10
Q. 14 When 2^{301} is divided by 5, the least positive remainder is
(A) 4
(B) 8
(C) 2
(D) 6
Q. 15 If the sum of the coefficients in the expansion of $\left(1-3 x+10 x^{2}\right)^{n}$ is a and if the sum of the coefficients in the expansion of $\left(1+x^{2}\right)^{n}$ is b, then -
(A) $a=3 b$
(B) $a=b^{3}$
(C) $b=a^{3}$
(D) none of these
Q. $16 \sum_{\mathrm{k}=0}^{10}{ }^{20} \mathrm{C}_{\mathrm{k}}=$
(A) $2^{19}+\frac{1}{2}{ }^{20} \mathrm{C}_{10}$
(B) 2^{19}
(C) ${ }^{20} \mathrm{C}_{10}$
(D) none of these
Q. 17 If $\mathrm{n} \in \mathrm{N}$ such that $(7+4 \sqrt{3})^{\mathrm{n}}=\mathrm{I}+\mathrm{F}$, where $\mathrm{I} \in \mathrm{N}$ and $0<\mathrm{F}<\mathrm{I}$, Then the value of $(\mathrm{I}+\mathrm{F})(1-\mathrm{F})$ is -
(A) 0
(B) 1
(C) $7^{2 n}$
(D) $2^{2 n}$
Q. 18 The value of ${ }^{95} \mathrm{C}_{4}+\sum_{\mathrm{j}=1}^{5}{ }^{100-\mathrm{j}} \mathrm{C}_{3}$ is -
(A) ${ }^{95} \mathrm{C}_{5}$
(B) ${ }^{100} \mathrm{C}_{4}$
(C) ${ }^{99} \mathrm{C}_{4}$
(D) ${ }^{100} \mathrm{C}_{5}$
Q. 19 If $(5+2 \sqrt{6})^{\mathrm{n}}=\mathrm{I}+f$, where $\mathrm{I} \in \mathrm{N}, \mathrm{n} \in \mathrm{N}$ and $0<f<1$, then I equals -
(A) $\frac{1}{-\mathrm{f}}-\mathrm{f}$
(B) $\frac{1}{1+\mathrm{f}}-\mathrm{f}$
(C) $\frac{1}{1-\mathrm{f}}-\mathrm{f}$
(D) $\frac{1}{1-\mathrm{f}}+\mathrm{f}$
Q. 20 If $\left({ }^{15} \mathrm{C}_{\mathrm{r}}+{ }^{15} \mathrm{C}_{\mathrm{r}-1}\right)\left({ }^{15} \mathrm{C}_{15-\mathrm{r}}+{ }^{15} \mathrm{C}_{16-\mathrm{r}}\right)=\left({ }^{16} \mathrm{C}_{13}\right)^{2}$, then the value of r is -
(A) $r=3$
(B) $r=2$
(C) $r=4$
(D) none of these

Passage Based Questions (Q. 21-23)

The numerically greatest term in the expansion of $(x+a)^{n}$ is given by $\frac{n+1}{\left|\frac{x}{a}\right|+1}=k$ (say)
(a) If k is an integer then T_{k} and T_{k+1} are the numerically greatest term
(b) If k is not an integer. Let m is its integral part then $\mathrm{T}_{\mathrm{m}+1}$ is the numerically greatest term.
Q. 21 The numerically greatest term in the expansion of $(3-5 x)^{15}$ when $x=\frac{1}{5}$ is -
(A) T_{4}
(B) $\mathrm{T}_{5} \& \mathrm{~T}_{6}$
(C) $\mathrm{T}_{4} \& \mathrm{~T}_{5}$
(D) T_{6}
Q. 22 The value of numerically greatest term in the expansion of $(3+5 x)^{11}$ when $x=\frac{1}{5}$
(A) 55×3^{10}
(B) 110×3^{9}
(C) 55×3^{8}
(D) 55×3^{9}
Q. 23 The value of numerically greatest term in the expansion of $(3 x+2)^{9}$ when $x=3 / 2$
(A) $\frac{7 \times 3^{13}}{2}$
(B) 7×3^{13}
(C) 7×3^{14}
(D) None of these

Question based on Statements (Q. 24-26)
Each of the questions given below consist of Statement - I and Statement - II. Use the following Key to choose the appropriate answer.
(A) If both Statement- I and Statement- II are true, and Statement - II is the correct explanation of Statement-I.
(B) If both Statement - I and Statement - II are true but Statement - II is not the correct explanation of Statement - I.
(C) If Statement - I is true but Statement - II is false
(D) If Statement - I is false but Statement- II is true.
Q. 24 Statement I : The number of terms in
$\left(1+x+x^{2}+\ldots \ldots+x^{10}\right)^{5}$ is 51 .
Statement II : The sum of the products of ${ }^{\mathrm{n}} \mathrm{C}_{0},{ }^{\mathrm{n}} \mathrm{C}_{1},{ }^{\mathrm{n}} \mathrm{C}_{2} \ldots . .{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$ (taken two together) is equal
to $2^{2 n-1}-\frac{(2 n)!}{2 .(n!)^{2}}$
Q. 25 Statement \mathbf{I} : The coefficient of x^{5} in the expansion of $\left(1+x^{2}\right)^{5}(1+x)^{4}$ is 120 .
Statement II : The sum of the coefficients in the expansion of $(1+2 x-3 y+5 z)^{3}$ is 125 .
Q. 26

Statement I : $\sum_{\mathrm{K}=1}^{\mathrm{n}} \mathrm{K} \cdot\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{K}}\right)^{2}=\mathrm{n} \cdot{ }^{2 \mathrm{n}-1} \mathrm{C}_{\mathrm{n}-1}$
Statement II : If 2^{2003} is divided by 15 the remainder is 1 .

LEVEL- 4

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q. 1 If the coefficient of $(\mathrm{r}+2)^{\text {th }}$ and $(3 \mathrm{r})^{\text {hh }}$ term in the exp. of $(1+x)^{2 n}$ are equal then
[AIEEE 2002]
(A) $n=2 r+1$
(B) $\mathrm{n}=2 \mathrm{r}-1$
(C) $n=2 r$
(D) None of these
Q. 2 If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots .+C_{n} x^{n}$, then $\frac{C_{1}}{C_{0}}+$ $\frac{2 \mathrm{C}_{2}}{\mathrm{C}_{1}}+\frac{3 \mathrm{C}_{3}}{\mathrm{C}_{2}}+\ldots \ldots . .+\frac{\mathrm{nC}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{n}-1}}=$
[AIEEE-2002]
(A) $\frac{n}{2}$
(B) $\mathrm{n}(\mathrm{n}+1)$
(C) $\frac{\mathrm{n}(\mathrm{n}+1)}{12}$
(D) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
Q. 3 The coefficient of x^{39} in the expansion of $\left(\mathrm{x}^{4}-\frac{1}{\mathrm{x}^{3}}\right)^{15}$ is-
[AIEEE-2002]
(A) -455
(B) -105
(C) +455
(D) +105
Q. 4 The number of integral terms in the expansion of $(\sqrt{3}+\sqrt[8]{5})^{256}$ is -
[AIEEE- 2003]
(A) 35
(B) 32
(C) 33
(D) 34
Q. 5 The coefficient of the middle term in the binomial expansion in powers of x of $(1+\alpha x)^{4}$ and of $(1-\alpha x)^{6}$ is the same if α equals-
[AIEEE 2004]
(A) $-\frac{5}{3}$
(B) $\frac{10}{3}$
(C) $-\frac{3}{10}$
(D) $\frac{3}{5}$
Q. 6 The coefficient of x^{n} in expansion of $(1+\mathrm{x})(1-\mathrm{x})^{\mathrm{n}}$ is-
[AIEEE 2004]
(A) $(\mathrm{n}-1)$
(B) $(-1)^{\mathrm{n}}(1-\mathrm{n})$
(C) $(-1)^{n-1}(\mathrm{n}-1)^{2}$
(D) $(-1)^{n-1} \mathrm{n}$
Q. 7 If $S_{n}=\sum_{r=0}^{n} \frac{1}{{ }^{n} C_{r}}$ and $t_{n}=\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}$, then $\frac{t_{n}}{S_{n}}$ is equal to-
[AIEEE 2004]
(A) $\frac{1}{2} \mathrm{n}$
(B) $\frac{1}{2} \mathrm{n}-1$
(C) $\mathrm{n}-1$
(D) $\frac{2 n-1}{2}$
Q. 8 If the coefficients of $r^{\text {th }},(r+1)^{\text {th }}$ and $(r+2)^{\text {th }}$ terms in the binomial expansion of $(1+y)^{\mathrm{m}}$ are in A.P., then m and r satisfy the equation -
[AIEEE-2005]
(A) $\mathrm{m}^{2}-\mathrm{m}(4 \mathrm{r}-1)+4 \mathrm{r}^{2}-2=0$
(B) $\mathrm{m}^{2}-\mathrm{m}(4 \mathrm{r}+1)+4 \mathrm{r}^{2}+2=0$
(C) $\mathrm{m}^{2}-\mathrm{m}(4 \mathrm{r}+1)+4 \mathrm{r}^{2}-2=0$
(D) $\mathrm{m}^{2}-\mathrm{m}(4 \mathrm{r}-1)+4 \mathrm{r}^{2}+2=0$
Q. 9 If the coefficient of x^{7} in $\left[a x^{2}+\left(\frac{1}{b x}\right)\right]^{11}$ equals the coefficient of x^{-7} in $\left[a x-\left(\frac{1}{b x^{2}}\right)\right]^{11}$, then a and b satisfy the relation -
[AIEEE-2005]
(A) $\mathrm{a}-\mathrm{b}=1$
(B) $a+b=1$
(C) $\frac{a}{b}=1$
(D) $\mathrm{ab}=1$
Q. 10 For natural numbers m, n if $(1-\mathrm{y})^{\mathrm{m}}(1+\mathrm{y})^{\mathrm{n}}=$ $1+a_{1} y+a_{2} y^{2}+\ldots$. , and $a_{1}=a_{2}=10$, then (m, n) is-
[AIEEE 2006]
(A) $(35,20)$
(B) $(45,35)$
(C) $(35,45)$
(D) $(20,45)$
Q. 11 In the binomial expansion of $(\mathrm{a}-\mathrm{b})^{\mathrm{n}}, \mathrm{n} \geq 5$, the sum of $5^{\text {th }}$ and $6^{\text {th }}$ terms is zero, then $\frac{\mathrm{a}}{\mathrm{b}}$ equals-
[AIEEE 2007]
(A) $\frac{5}{\mathrm{n}-4}$
(B) $\frac{6}{\mathrm{n}-5}$
(C) $\frac{\mathrm{n}-5}{6}$
(D) $\frac{\mathrm{n}-4}{5}$
Q. 12 The sum of the series ${ }^{20} \mathrm{C}_{0}-{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{2}-{ }^{20} \mathrm{C}_{3}+$ $\ldots . .-\ldots . .+{ }^{20} \mathrm{C}_{10}$ is-
[AIEEE 2007]
(A) $-{ }^{20} \mathrm{C}_{10}$
(B) $\frac{1}{2}{ }^{20} \mathrm{C}_{10}$
(C) 0
(D) ${ }^{20} \mathrm{C}_{10}$

Q. 13 Statement-1:

$$
\sum_{\mathrm{r}=0}^{\mathrm{n}}(\mathrm{r}+1)^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=(\mathrm{n}+2) 2^{\mathrm{n}-1}
$$

Statement -2:

$$
\sum_{\mathrm{r}=0}^{\mathrm{n}}(\mathrm{r}+1)^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}=(1+\mathrm{x})^{\mathrm{n}}+\mathrm{nx}(1+\mathrm{x})^{\mathrm{n}-1}
$$

[AIEEE-2008]
(A) Statement-1 is true, Statement -2 is true; Statement-2 is a correct explanation for Statement-1
(B) Statement-1 is true, Statement -2 is true; Statement-2 is not a correct explanation for Statement-1
(C) Statement-1 is true, Statement - 2 is false
(D) Statement-1 is false, Statement-2 is true
Q. 14 The remainder left out when $8^{2 \mathrm{n}}-(62)^{2 \mathrm{n}+1}$ is divided by 9 is-
[AIEEE-2009]
(A) 0
(B) 2
(C) 7
(D) 8
Q. 15 Let $S_{1}=\sum_{j=1}^{10} j(j-1){ }^{10} C_{j}, S_{2}=\sum_{j=1}^{10} j{ }^{10} C_{j} \quad$ and $S_{3}=\sum_{j=1}^{10} j^{2}{ }^{10} C_{j}$.

Statement-1: $S_{3}=55 \times 2^{9}$.
Statement-2: $S_{1}=90 \times 2^{8}$ and $S_{2}=10 \times 2^{8}$.
[AIEEE-2010]
(A) Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement -1
(B) Statement -1 is true, Statement -2 is true; Statement -2 is not a correct explanation for Statement -1.
(C) Statement -1 is true, Statement -2 is false.
(D) Statement -1 is false, Statement -2 is ture.
Q. 16 The coefficient of x^{7} in the expansion of $\left(1-x-x^{2}+x^{3}\right)^{6}$ is :
[AIEEE-2011]
(A) 144
(B) -132
(C) -144
(D) 132
Q. 17 The term independent of x in expansion of $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$ is -
[JEE Main- 2013]
(A) 210
(B) 310
(C) 4
(D) 120

SECTION - B

Q. 1 If n is an integer between 0 and 21 ; then the minimum value of $n!(21-n)$! is -
[IIT-1990]
(A) $9!12!$
(B) $10!11!$
(C) 20 !
(D) 2 !
Q. 2 The expansion $\left[x+\left(x^{3}-1\right)^{1 / 2}\right]^{5}+\left[x-\left(x^{3}-1\right)^{1 / 2}\right]^{5}$ is a polynomial of degree -
[IIT- 1992]
(A) 5
(B) 6
(C) 7
(D) 8
Q. 3 If the $r^{\text {th }}$ term in the expansion of $\left(x / 3-2 / x^{2}\right)^{10}$ contains x^{4}, then r is equal to -
[IIT-(Scr.)- 1992]
(A) 2
(B) 3
(C) 4
(D) 5
Q. 4 The coefficient of x^{53} in the expansion $\sum_{m=0}^{100}{ }^{100} C_{m}(x-3)^{100-m} 2^{m}$ is -
[IIT (Scr.)-1992]
(A) ${ }^{100} \mathrm{C}_{47}$
(B) ${ }^{100} \mathrm{C}_{53}$
(C) $-{ }^{100} \mathrm{C}_{53}$
(D) $-{ }^{100} \mathrm{C}_{100}$
Q. 5 The value of $\mathrm{C}_{0}+3 \mathrm{C}_{1}+5 \mathrm{C}_{2}+7 \mathrm{C}_{3}+\ldots \ldots .+$ $(2 n+1) C_{n}$ is equal to -
[IIT (Scr.)-1993]
(A) 2^{n}
(B) $2^{\mathrm{n}}+\mathrm{n} \cdot 2^{\mathrm{n}-1}$
(C) $2^{\mathrm{n}} \cdot(\mathrm{n}+1)$
(D) None of these
Q. 6 The largest term in the expansion of $(3+2 x)^{50}$ where $\mathrm{x}=1 / 5$ is - \quad [IIT (Scr.)-1993]
(A) $5^{\text {th }}$
(B) $51^{\text {th }}$
(C) $6^{\text {th }}$ and $7^{\text {th }}$
(D) $8^{\text {th }}$
Q. 7 The sum of the rational terms in the expansion of $\left(\sqrt{2}+3^{1 / 5}\right)^{10}$ is -
[IIT-Re-ex- 1997]
(A) 41
(B) 42
(C) 40
(D) 43
Q. 8 If $a_{n}=\sum_{r=0}^{n} \frac{1}{{ }^{n} C_{r}}$ then $\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}$ equals -
[IIT - 1998]
(A) $(\mathrm{n}-1) \mathrm{a}_{\mathrm{n}}$
(B) $n a_{n}$
(C) $1 / 2 n a_{n}$
(D) None of these
Q. 9 If n is an odd natural number, then $\sum_{r=0}^{n} \frac{(-1)^{r}}{{ }^{n} C_{r}}$ equal
[IIT- 1998]
(A) 0
(B) $1 / n$
(C) $n / 2 n$
(D) none of these
Q. 10 If in the expansion of $(1+x)^{m}(1-x)^{\mathrm{n}}$, the coefficients of x and x^{2} are 3 and -6 respectively, then m is -
[IIT - 1999]
(A) 6
(B) 9
(C) 12
(D) 24
Q. 11 For $2 \leq r \leq n,\binom{n}{r}+2\binom{n}{r-1}+\binom{n}{r-2}=$ \qquad
[IIT-Sc- 2000]
(A) $\binom{n+1}{r-1}$
(B) $2\binom{\mathrm{n}+1}{\mathrm{r}+1}$
(C) $2\binom{n+2}{r}$
(D) $\binom{\mathrm{n}+2}{\mathrm{r}}$
Q. 12 In the binomial expansion of $(\mathrm{a}-\mathrm{b})^{\mathrm{n}}, \mathrm{n} \geq 5$, the sum of the $5^{\text {th }}$ and $6^{\text {th }}$ terms is zero. Then $\frac{\mathrm{a}}{\mathrm{b}}$ equals-
[IIT-Sc- 2001]
(A) $\frac{\mathrm{n}-5}{6}$
(B) $\frac{\mathrm{n}-4}{5}$
(C) $\frac{5}{n-4}$
(D) $\frac{6}{\mathrm{n}-5}$
Q. 13 Find coefficient of t^{24} in the expansion of $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$ is-
[IIT-Sc- 2003]
(A) ${ }^{12} \mathrm{C}_{6}+2$
(B) ${ }^{12} \mathrm{C}_{6}+1$
(C) ${ }^{12} \mathrm{C}_{6}+3$
(D) ${ }^{12} \mathrm{C}_{6}$
Q. $14 \quad$ If ${ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}}=\left(\mathrm{k}^{2}-3\right)^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}$, then k lies between
[IIT-Sc- 2004]
(A) $(-\infty,-2)$
(B) $(2, \infty)$
(C) $[-\sqrt{3}, \sqrt{3}]$
(D) $(\sqrt{3}, 2]$
Q. $15\binom{30}{0}\binom{30}{10}-\binom{30}{1}\binom{30}{11}+\ldots \ldots .+\binom{30}{20}\binom{30}{30}=$
[IIT-Sc- 2005]
(A) $\binom{30}{10}$
(B) $\binom{60}{20}$
(C) $\binom{31}{10}$
(D) $\binom{31}{11}$
Q. 16 For $r=0,1, \ldots, 10$, let A_{r}, B_{r} and C_{r} denote, respectively, the coefficient of x^{r} in the expansions of $(1+x)^{10},(1+x)^{20}$ and $(1+x)^{30}$. Then $\sum_{\mathrm{r}=1}^{10} \mathrm{~A}_{\mathrm{r}}\left(\mathrm{B}_{10} \mathrm{~B}_{\mathrm{r}}-\mathrm{C}_{10} \mathrm{~A}_{\mathrm{r}}\right)$ is equal to
[IIT - 2010]
(A) $\mathrm{B}_{10}-\mathrm{C}_{10}$
(B) $\mathrm{A}_{10}\left(\mathrm{~B}_{10}^{2}-\mathrm{C}_{10} \mathrm{~A}_{10}\right)$
(C) 0
(D) $\mathrm{C}_{10}-\mathrm{B}_{10}$
Q. 17 The coefficients of three consecutive terms of $(1+x)^{\mathrm{n}+5}$ are in the ratio $5: 10: 14$. Then $\mathrm{n}=$
[JEE - Advance 2013]

ANSWER KEY

LEVEL- 1

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	A	C	C	D	C	C	A	A	A	C	C	D	A	C	A	C	D	B	B	B
Ques.	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
Ans.	C	A	A	C	B	A	C	C	C	D	C	D	C	B	B	B	C	B	B	B
Ques.	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$
Ans.	B	B	B	D	C	B	D	B	B	C	C	C	C	A	D	C	C	C	A	A

LEVEL- 2

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	C	B	C	B	B	A	A	C	A	D	D	C	B	B	B	B	B	A	B	A
Ques.	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$					
Ans.	C	A	C	B	B	B	C	D	A	A	A	B	C	C	D					

LEVEL- 3

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
D	D	C	C	D	B	C	C	B	A	B	B	B	C	B	A	B	B	C	A
$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$														
C	D	A	D	D	C														

LEVEL- 4

SECTION-A

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$
Ans.	C	D	A	C	C	B	A	C	D	C	D	B	A	B	C	C	A

SECTION-B

1.[B] $\operatorname{Min} n!(21-n)!=?$
${ }^{21} \mathrm{C}_{\mathrm{n}}$ is maximum when $\mathrm{n}=\frac{21+1}{2}=11$
$\therefore \operatorname{Max}\left({ }^{21} \mathrm{C}_{\mathrm{n}}\right)={ }^{21} \mathrm{C}_{11}$
$\therefore[\mathrm{n}!(21-\mathrm{n})!]_{\min }=\frac{21!}{21!\mathrm{C}_{\mathrm{n}} / \max }=\frac{21!}{{ }^{21} \mathrm{C}_{11}}$
$=10!11!$
2.[C] $\quad\left(x+\sqrt{x^{3}-1}\right)^{5}+\left(x-\sqrt{x^{3}-1}\right)^{5}=2\left(\mathrm{~T}_{1}+\mathrm{T}_{3}+\mathrm{T}_{5}\right)$

Here $\mathrm{T}_{1}={ }^{5} \mathrm{C}_{0} \cdot \mathrm{X}^{5}$
$\mathrm{T}_{3}={ }^{5} \mathrm{C}_{2} \cdot \mathrm{x}^{3}\left(\sqrt{\mathrm{x}^{3}-1}\right)^{3}={ }^{5} \mathrm{C}_{2} \cdot \mathrm{x}^{3}\left(\mathrm{x}^{3}-1\right)$
$\mathrm{T}_{5}={ }^{5} \mathrm{C}_{4} \cdot \mathrm{X}\left(\sqrt{\mathrm{x}^{3}-1}\right)={ }^{5} \mathrm{C}_{4} \cdot \mathrm{X} \cdot\left(\mathrm{x}^{3}-1\right)^{2}$
Clearly highest power of x is $7 \&$ that occurs is $5^{\text {th }}$ term
3.[B] Here $\mathrm{T}_{\mathrm{r}+1}={ }^{10} \mathrm{C}_{\mathrm{r}} \cdot\left(\frac{\mathrm{x}}{3}\right)^{10-\mathrm{r}} \cdot\left(\frac{-2}{\mathrm{x}^{2}}\right)^{\mathrm{r}}$
$\therefore \mathrm{T}_{\mathrm{r}+1}={ }^{10} \mathrm{C}_{\mathrm{r}} \cdot \frac{(-2)^{\mathrm{r}}}{(3)^{10-\mathrm{r}}} \cdot \mathrm{x}^{10-3 \mathrm{r}}$
put $10-3 \mathrm{r}=4$
$\therefore \mathrm{r}=2$
$\therefore \mathrm{x}^{4}$ occurs in $\mathrm{T}_{2+1}=\mathrm{T}_{3}$
4.[C] $\quad \sum_{m=0}^{100}{ }^{100} C_{m} \cdot(x-3)^{100-m} 2^{\mathrm{m}}=(x-3+2)^{100}$
$=(\mathrm{x}-1)^{100}=(1-\mathrm{x})^{100}$
\therefore In $(1-\mathrm{x})^{100}$: coefficient of $\mathrm{x}^{53}={ }^{100} \mathrm{C}_{53}(-1)^{53}$
5.[C] $=\sum_{\mathrm{r}=0}^{\mathrm{n}}(2 \mathrm{r}+1) \mathrm{C}_{\mathrm{r}}$
$=2 \sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{rC}_{\mathrm{r}}+\sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$
$=2 . \mathrm{n} \cdot 2^{\mathrm{n}-1}+2^{\mathrm{n}}$
$=(n+1) 2^{n}$
6.[C] In $(x+a)^{n}:$ let $k=\frac{n+1}{\left|\frac{x}{a}\right|+1}$

Here $\mathrm{k}=\frac{50+1}{\left|\frac{3}{2 \mathrm{x}}\right|+1}$
put $\mathrm{x}=1 / 5$
$\mathrm{k}=\frac{51}{\frac{15}{2}+1}=\frac{102}{17}=6$
$\because \mathrm{k}$ is integer
$\therefore \mathrm{T}_{\mathrm{k}} \& \mathrm{~T}_{\mathrm{k}+1}$ i.e. $\mathrm{T}_{6} \& \mathrm{~T}_{7}$ are greatest term
7.[A] $\quad\left(\sqrt{2}+3^{1 / 5}\right)^{10}$
$\because \mathrm{T}_{\mathrm{r}+1}={ }^{10} \mathrm{C}_{\mathrm{r}} .(\sqrt{2})^{10-\mathrm{r}}\left(3^{1 / 5}\right)^{\mathrm{r}}$
$={ }^{10} \mathrm{C}_{\mathrm{r}} \cdot 2^{5-\frac{\mathrm{r}}{2}} \cdot 3^{\mathrm{r} / 5}$
so r must be divisible by both $2 \& 5$
$\therefore \mathrm{r}$ must be divisible by 10
$\because \mathrm{r}$ varies from 0 to 10
$\therefore \mathrm{r}=0,10$
$\therefore \mathrm{T}_{0+1}={ }^{10} \mathrm{C}_{0} .2^{5}=32$
$\& \mathrm{~T}_{10+1}={ }^{10} \mathrm{C}_{10} \cdot 3^{2}=9$
\therefore sum of rational terms $=41$
8.[C] Let $b=\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}$

$$
\begin{aligned}
& \text { then } \mathrm{b}=\sum_{\mathrm{r}=0}^{\mathrm{n}} \frac{\mathrm{n}-(\mathrm{n}-\mathrm{r})}{{ }^{\mathrm{n}} C_{\mathrm{r}}} \\
& \mathrm{~b}=\mathrm{n} \sum_{\mathrm{r}=0}^{\mathrm{n}} \frac{1}{{ }^{\mathrm{n}} C_{r}}-\sum_{\mathrm{r}=0}^{\mathrm{n}} \frac{\mathrm{n}-\mathrm{r}}{{ }^{\mathrm{n}} C_{\mathrm{n}-\mathrm{r}}}
\end{aligned}
$$

$$
\left(\because{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} C_{\mathrm{n}-\mathrm{r}}\right)
$$

$\mathrm{b}=\mathrm{n} \mathrm{a}_{\mathrm{n}}-\mathrm{b}$
$2 \mathrm{~b}=\mathrm{na}_{\mathrm{n}}$
$\therefore \mathrm{b}=\frac{1}{2} \mathrm{na}_{\mathrm{n}}$
9. [A] $\mathrm{S}=\sum_{\mathrm{r}=0}^{\mathrm{n}} \frac{(-1)^{\mathrm{r}}}{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}}$

$$
S=\frac{1}{{ }^{n} C_{0}}-\frac{1}{{ }^{n} C_{1}}+\frac{1}{{ }^{n} C_{2}} \ldots \ldots . \frac{1}{{ }^{n} C_{n-2}}+\frac{1}{{ }^{n} C_{n-1}}-\frac{1}{{ }^{n} C_{n}}
$$

$(\because \mathrm{n}$ is odd $)$
$\therefore \mathrm{S}=0$
10.[C] $(1+x)^{m}(1-x)^{n}$
$=\left(1+{ }^{m} C_{1} x+{ }^{m} C_{2} x^{2}+\ldots.\right)\left(1-{ }^{n} C_{1} x+{ }^{n} C_{2} X^{2} \ldots ..\right)$
coefficient of $x=-{ }^{n} C_{1}+{ }^{m} C_{1}=m-n=3 \ldots$. (i)
\& coefficient of $x^{2}={ }^{n} C_{2}-{ }^{m} C_{1} \cdot{ }^{n} C_{1}+{ }^{m} C_{2}$
$=\frac{\mathrm{n}(\mathrm{n}-1)}{2}-\mathrm{mn}+\frac{\mathrm{m}(\mathrm{m}-1)}{2}=6$
solving (i) \& (ii), we get $\left[\begin{array}{l}m=12 \\ n=9\end{array}\right.$
11.[D] ${ }^{{ }^{n} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2}$
$={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}-1}$
$={ }^{\mathrm{n}+2} \mathrm{C}_{\mathrm{r}}$
12.[B] $\because \mathrm{T}_{5}+\mathrm{T}_{6}=0$
$\Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{4} \cdot \mathrm{a}^{\mathrm{n}-4} \mathrm{~b}^{4}-{ }^{\mathrm{n}} \mathrm{C}_{5} \mathrm{a}^{\mathrm{n}-5} \mathrm{~b}^{5}=0$
$\therefore{ }^{\mathrm{n}} \mathrm{C}_{4} \mathrm{a}^{\mathrm{n}-4} \mathrm{~b}^{4}={ }^{\mathrm{n}} \mathrm{C}_{5} . \mathrm{a}^{\mathrm{n}-5} \mathrm{~b}^{5}$
$\Rightarrow \frac{{ }^{\mathrm{n}} \mathrm{C}_{5}}{{ }^{\mathrm{n}} \mathrm{C}_{4}}=\frac{\mathrm{a}}{\mathrm{b}}$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{n}-5+1}{5}=\frac{\mathrm{n}-4}{5}$
13. [A] $\left(1+\mathrm{t}^{2}\right)^{12}\left(1+\mathrm{t}^{12}\right)\left(1+\mathrm{t}^{24}\right)$

\therefore coefficient of $\mathrm{t}^{24}=1 .{ }^{12} \mathrm{C}_{12}+1 .{ }^{12} \mathrm{C}_{6}+1$

$$
\begin{aligned}
& =1+{ }^{12} \mathrm{C}_{6}+1 \\
& ={ }^{12} \mathrm{C}_{6}+2
\end{aligned}
$$

14.[D] ${ }^{n-1} C_{r}=\left(k^{2}-3\right){ }^{n} C_{r+1}$
$\Rightarrow{ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}}=\left(\mathrm{k}^{2}-3\right) \cdot{ }^{\mathrm{n}-1} C_{\mathrm{r}} \cdot \frac{\mathrm{n}}{\mathrm{r}+1}$
$\Rightarrow \mathrm{k}^{2}=3+\frac{\mathrm{r}+1}{\mathrm{n}}$
Now r varies from 0 to n
$\therefore \mathrm{k}^{2}$ varies from $\left(3+\frac{1}{\mathrm{n}}\right)$ to $\left(4+\frac{1}{\mathrm{n}}\right)$
$\therefore \mathrm{k} \in(\sqrt{3}, 2]$
15.[A] $\quad\left({ }^{30} \mathrm{C}_{0}\right)\left({ }^{30} \mathrm{C}_{10}\right)-\left({ }^{30} \mathrm{C}_{1}\right)\left({ }^{30} \mathrm{C}_{11}\right) \ldots \ldots .+\left({ }^{30} \mathrm{C}_{20}\right)\left({ }^{30} \mathrm{C}_{30}\right)$
$=\left({ }^{30} \mathrm{C}_{0}\right)\left({ }^{30} \mathrm{C}_{20}\right)-\left({ }^{30} \mathrm{C}_{1}\right)\left({ }^{30} \mathrm{C}_{19}\right) \ldots \ldots .+\left({ }^{30} \mathrm{C}_{20}\right)\left({ }^{30} \mathrm{C}_{0}\right)$
$=$ Coefficient of x^{20} in $(1+x)^{30} \cdot(1-x)^{30}$
$=$ Coefficient of x^{20} in $\left(1-x^{2}\right)^{30}$
$={ }^{30} \mathrm{C}_{10}(-1){ }^{10}={ }^{30} \mathrm{C}_{10}$
16.[D] $\mathrm{A}_{\mathrm{r}}={ }^{10} \mathrm{C}_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}={ }^{20} \mathrm{C}_{\mathrm{r}}, \mathrm{C}_{\mathrm{r}}={ }^{30} \mathrm{C}_{\mathrm{r}}$
$\sum_{\mathrm{r}=1}^{10}{ }^{10} \mathrm{C}_{\mathrm{r}}\left({ }^{20} \mathrm{C}_{10}{ }^{20} \mathrm{C}_{\mathrm{r}}-{ }^{30} \mathrm{C}_{10}{ }^{10} \mathrm{C}_{\mathrm{r}}\right)$
$={ }^{20} \mathrm{C}_{10} \sum_{\mathrm{r}=1}^{10}{ }^{10} \mathrm{C}_{\mathrm{r}}{ }^{20} \mathrm{C}_{20-\mathrm{r}}-{ }^{30} \mathrm{C}_{10} \sum_{\mathrm{r}=1}^{10}{ }^{10} \mathrm{C}_{\mathrm{r}}{ }^{10} \mathrm{C}_{\mathrm{r}}$
$={ }^{20} \mathrm{C}_{10}\left({ }^{30} \mathrm{C}_{20}-{ }^{10} \mathrm{C}_{0}{ }^{20} \mathrm{C}_{20}\right)-{ }^{30} \mathrm{C}_{10}\left[{ }^{20} \mathrm{C}_{10}-\left({ }^{10} \mathrm{C}_{0}\right)^{2}\right]$
$={ }^{20} \mathrm{C}_{10}{ }^{30} \mathrm{C}_{20}-{ }^{20} \mathrm{C}_{10}-{ }^{30} \mathrm{C}_{10}{ }^{20} \mathrm{C}_{10}+{ }^{30} \mathrm{C}_{10}$
$={ }^{30} \mathrm{C}_{10}-{ }^{20} \mathrm{C}_{10}$
$=\mathrm{C}_{10}-\mathrm{B}_{10}$
17.[6] $\frac{{ }^{n+5} C_{r}}{{ }^{n+5} C_{r+1}}=\frac{5}{10} \Rightarrow n-3 r=-3 \ldots$ (1)
$\frac{{ }^{\mathrm{n}+5} \mathrm{C}_{\mathrm{r}+1}}{{ }^{\mathrm{n}+5} \mathrm{C}_{\mathrm{r}+2}}=\frac{10}{14} \Rightarrow 5 \mathrm{n}-12 \mathrm{r}=-6 \ldots$ (2)
solve (1) and (2)
$r=3$
$\mathrm{n}=6$

